MQ131 Semiconductor Sensor for Ozone

Sensitive material of MQ131 gas sensor is SnO\textsubscript{2}, which with lower conductivity in clean air. When Ozone gas exists. The sensor’s conductivity is more higher along with the gas concentration rising. Please use simple electrocircuit, Convert change of conductivity to correspond output signal of gas concentration.

MQ131 gas sensor has high sensitivity to Ozone, also sensitive to CL2, NO2, etc.

**Character**

* Good sensitivity to Ozone in wide range
* High sensitivity to Ozone
* Long life and low cost
* Simple drive circuit

**Application**

* Domestic Ozone concentration overload Detector
* Industrial Ozone concentration overload Detector
* Portable Ozone concentration overload Detector

**Technical Data**

<table>
<thead>
<tr>
<th>Character</th>
<th>Model No.</th>
<th>Sensor Type</th>
<th>Standard Encapsulation</th>
<th>Detection Gas</th>
<th>Concentration</th>
<th>Loop Voltage</th>
<th>Heater Voltage</th>
<th>Load Resistance</th>
<th>Sensing Resistance</th>
<th>Sensitivity</th>
<th>Slope</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MQ131</td>
<td>Semiconductor</td>
<td>Bakelite (Black Bakelite)</td>
<td>Ozone</td>
<td>10-1000ppb</td>
<td>$V_c \leq 24\text{V} \text{ DC}$</td>
<td>$5.0V \pm 0.2V \text{ AC or DC}$</td>
<td>$R_L$ Adjustable</td>
<td>$R_s$</td>
<td>$S$</td>
<td>$20°C \pm 2°C$</td>
<td>$65% \pm 5% \text{RH}$</td>
</tr>
<tr>
<td></td>
<td>Standard test circuit</td>
</tr>
<tr>
<td></td>
<td>$V_c: 5.0V \pm 0.1V$</td>
</tr>
<tr>
<td></td>
<td>$V_H: 5.0V \pm 0.1V$</td>
</tr>
<tr>
<td></td>
<td>Preheat time</td>
</tr>
<tr>
<td></td>
<td>Over 48 hours</td>
</tr>
</tbody>
</table>

Power of Sensitivity body ($P_s$): $P_s=V_c^2 \times R_s/(R_s+R_L)^2$

Resistance of sensor ($R_s$): $R_s=(V_c/VRL-1) \times R_L$

**Configuration**

The above is basic test circuit of the sensor. The sensor need to be put 2 voltage, heater voltage ($V_H$) and test voltage ($V_C$). VH used to supply certified working temperature to the sensor, while VC used to detect voltage ($VRL$) on load resistance ($RL$) whom is in series with sensor. The sensor has light polarity, Vc need DC power. VC and VH could use same power circuit with precondition to assure performance of sensor. In order to make the sensor with better performance, suitable RL value is needed:

\[ V_H: 5.0V \pm 0.2V \text{ AC or DC} \]

\[ V_C: 5.0V \pm 0.1V \text{ DC} \]

\[ R_{H}: 31\Omega \pm 3\Omega \text{ (Room Tem.)} \]

\[ P_H: \leq 900\text{mW} \]

\[ R_{s}: 50K\Omega - 500K\Omega \text{ (in 100ppb O}_3\text{)} \]

\[ S: R_s \text{(in air)}/R_s \text{(in 50ppb O}_3\text{)} \geq 3 \]

\[ \alpha: \leq 0.6(R_{500ppb}/R_{100ppb \text{O}_3}) \]

\[ 20°C \pm 2°C; \text{65%}\pm 5\% \text{RH} \]

\[ V_c: 5.0V \pm 0.1V; \quad V_H: 5.0V \pm 0.1V \]

\[ \text{Over 48 hours} \]
Sensitivity Characteristics

Influence of Temperature/Humidity

Fig. 1 shows the typical sensitivity characteristics of the MQ131, ordinate means resistance ratio of the sensor \((\frac{R_s}{R_0})\), abscissa is concentration of gases. \(R_s\) means resistance in different gases, \(R_0\) means resistance of sensor in 50ppb CL2. All test are under standard test conditions.

Fig. 2 shows the typical temperature and humidity characteristics. Ordinate means resistance ratio of the sensor \((\frac{R_s}{R_0})\), \(R_s\) means resistance of sensor in 100ppb Ozone under different tem. and humidity. \(R_0\) means resistance of the sensor in environment of 100ppb Ozone, 20°C/65%RH

Structure and configuration

Structure and configuration of MQ131 gas sensor is shown as Fig. 3, sensor composed by micro AL2O3 ceramic tube, Tin Dioxide (SnO2) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-4 have 6 pin, 4 of them are used to fetch signals, and other 2 are used for providing heating current.


**Notification**

1. **Following conditions must be prohibited**

   1.1 Exposed to organic silicon steam
   
   Organic silicon steam cause sensors invalid, sensors must be avoid exposing to silicon bond, fixature, silicon latex, putty or plastic contain silicon environment

   1.2 High Corrosive gas
   
   If the sensors exposed to high concentration corrosive gas (such as \( \text{H}_2\text{Sz}, \text{SO}_x, \text{Cl}_2, \text{HCl} \) etc), it will not only result in corrosion of sensors structure, also it cause sincere sensitivity attenuation.

   1.3 Alkali, Alkali metals salt, halogen pollution
   
   The sensors performance will be changed badly if sensors be sprayed polluted by alkali metals salt especially brine, or be exposed to halogen such as fluorin.

   1.4 Touch water
   
   Sensitivity of the sensors will be reduced when spattered or dipped in water.

   1.5 Freezing
   
   Do avoid icing on sensor’s surface, otherwise sensor would lose sensitivity.

   1.6 Applied voltage higher
   
   Applied voltage on sensor should not be higher than stipulated value, otherwise it cause down-line or heater damaged, and bring on sensors’ sensitivity characteristic changed badly.

   1.7 Voltage on wrong pins
   
   For 6 pins sensor, if apply voltage on 1 ǃ 3 pins or 4 ǃ 6 pins, it will make lead broken, and without signal when apply on 2 ǃ 4 pins

2. **Following conditions must be avoided**

   2.1 Water Condensation
   
   Indoor conditions, slight water condensation will effect sensors performance lightly. However, if water condensation on sensors surface and keep a certain period, sensor’ sensitivity will be decreased.

   2.2 Used in high gas concentration
   
   No matter the sensor is electrified or not, if long time placed in high gas concentration, if will affect sensors characteristic.

   2.3 Long time storage
   
   The sensors resistance produce reversible drift if it’s stored for long time without electrify, this drift is related with storage conditions. Sensors should be stored in airproof without silicon gel bag with clean air. For the sensors with long time storage but no electrify, they need long aging time for stbility before using.

   2.4 Long time exposed to adverse environment
   
   No matter the sensors electrified or not, if exposed to adverse environment for long time, such as high humidity, high temperature, or high pollution etc, it will effect the sensors performance badly.

   2.5 Vibration
   
   Continual vibration will result in sensors down-lead response then rupture. In transportation or assembling line, pneumatic screwdriver/ultrasonic welding machine can lead this vibration.

   2.6 Concussion
   
   If sensors meet strong concussion, it may lead its lead wire disconnected.

   2.7 Usage
   
   For sensor, handmade welding is optimal way. If use wave crest welding should meet the following conditions:

   2.7.1 Soldering flux: Rosin soldering flux contains least chlorine
   2.7.2 Speed: 1-2 Meter/ Minute
   2.7.3 Warm-up temperature: \(100±20°C\)
   2.7.4 Welding temperature: \(250±10°C\)
   2.7.5 1 time pass wave crest welding machine

   If disobey the above using terms, sensors sensitivity will be reduced.
MQ131 Semiconductor Sensor for Ozone

Sensitive material of MQ131 gas sensor is SnO₂, which with lower conductivity in clean air. When Ozone gas exists, the sensor’s conductivity is more higher along with the gas concentration rising. Please use simple electrocircuit, Convert change of conductivity to correspond output signal of gas concentration.

MQ131 gas sensor has high sensitivity to Ozone, also sensitive to Cl₂, NO₂, etc.

**Character**
- Good sensitivity to Ozone in wide range
- High sensitivity to Ozone
- Long life and low cost
- Simple drive circuit

**Application**
- Domestic Ozone concentration overload Detector
- Industrial Ozone concentration overload Detector
- Portable Ozone concentration overload Detector

**Technical Data**

<table>
<thead>
<tr>
<th>Model No.</th>
<th>MQ131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Type</td>
<td>Semiconductor</td>
</tr>
<tr>
<td>Standard Encapsulation</td>
<td>Bakelite (Black Bakelite)</td>
</tr>
<tr>
<td>Detection Gas</td>
<td>Ozone</td>
</tr>
<tr>
<td>Concentration</td>
<td>10-1000ppm Ozone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Loop Voltage $V_c$</th>
<th>≤24V DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage $V_H$</td>
<td>5.0V±0.2V AC or DC</td>
<td></td>
</tr>
<tr>
<td>Load Resistance $R_L$</td>
<td>Adjustable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Character</th>
<th>Heater Resistance $R_H$</th>
<th>31Ω±3Ω (Room Tem.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater consumption $P_H$</td>
<td>≤900mW</td>
<td></td>
</tr>
<tr>
<td>Sensing Resistance $R_s$</td>
<td>50KΩ-500KΩ(in 50ppm O₃)</td>
<td></td>
</tr>
<tr>
<td>Sensitivity $S$</td>
<td>$R_s$(in air)/$R_s$(in 50ppm O₃)≥3</td>
<td></td>
</tr>
<tr>
<td>Slope $\alpha$</td>
<td>$(R_{room}/R_{room0})$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Tem. Humidity</th>
<th>20℃±2℃; 65%±5%RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard test circuit</td>
<td>$V_c$:5.0V±0.1V; $V_H$: 5.0V±0.1V</td>
<td></td>
</tr>
<tr>
<td>Preheat time</td>
<td>Over 48 hours</td>
<td></td>
</tr>
</tbody>
</table>

**Power of Sensitivity body($P_s$):** $P_s=V_c^2×R_s/(Rs+RL)^2$

**Resistance of sensor($R_s$):** $R_s=(V_c/VRL-1)×RL$

**Basic test loop**

The above is basic test circuit of the sensor. The sensor need to be put 2 voltage, heater voltage ($V_H$) and test voltage ($V_C$). VH used to supply certified working temperature to the sensor, while VC used to detect voltage (VRL) on load resistance ($RL$) whom is in series with sensor. The sensor has light polarity, Vc need DC power. VC and VH could use same power circuit with precondition to assure performance of sensor. In order to make the sensor with better performance, suitable RL value is needed.
Sensitivity Characteristics

Fig. 1 shows the typical sensitivity characteristics of the MQ131, ordinate means resistance ratio of the sensor \( \frac{R_s}{R_o} \), abscissa is concentration of gases. \( R_s \) means resistance in different gases, \( R_o \) means resistance of sensor in 50ppm CL2. All test are under standard test conditions.

Influence of Temperature/Humidity

Fig. 2 shows the typical temperature and humidity characteristics. Ordinate means resistance ratio of the sensor \( \frac{R_s}{R_o} \), \( R_s \) means resistance of sensor in 50ppm Ozone under different tem. and humidity. \( R_o \) means resistance of the sensor in environment of 50ppm Ozone, 20°C/65%RH.

Structure and configuration

Structure and configuration of MQ131 gas sensor is shown as Fig. 3, sensor composed by micro AL2O3 ceramic tube, Tin Dioxide (SnO2) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-4 have 6 pin, 4 of them are used to fetch signals, and other 2 are used for providing heating current.
Notification

1 Following conditions must be prohibited

1.1 Exposed to organic silicon steam

Organic silicon steam cause sensors invalid, sensors must be avoid exposing to silicon bond, fixature, silicon latex, putty or plastic contain silicon environment

1.2 High Corrosive gas

If the sensors exposed to high concentration corrosive gas (such as H₂Sz, SOₓ, Cl₂, HCl etc), it will not only result in corrosion of sensors structure, also it cause sincere sensitivity attenuation.

1.3 Alkali, Alkali metals salt, halogen pollution

The sensors performance will be changed badly if sensors be sprayed polluted by alkali metals salt especially brine, or be exposed to halogen such as fluorin.

1.4 Touch water

Sensitivity of the sensors will be reduced when spattered or dipped in water.

1.5 Freezing

Do avoid icing on sensor’s surface, otherwise sensor would lose sensitivity.

1.6 Applied voltage higher

Applied voltage on sensor should not be higher than stipulated value, otherwise it cause down-line or heater damaged, and bring on sensors’ sensitivity characteristic changed badly.

1.7 Voltage on wrong pins

For 6 pins sensor, if apply voltage on 1 ǃ 3 pins or 4 ǃ 6 pins, it will make lead broken, and without signal when apply on 2 ǃ 4 pins

2 Following conditions must be avoided

2.1 Water Condensation

Indoor conditions, slight water condensation will effect sensors performance lightly. However, if water condensation on sensors surface and keep a certain period, sensor’ sensitivity will be decreased.

2.2 Used in high gas concentration

No matter the sensor is electrified or not, if long time placed in high gas concentration, if will affect sensors characteristic.

2.3 Long time storage

The sensors resistance produce reversible drift if it’s stored for long time without electrify, this drift is related with storage conditions. Sensors should be stored in airproof without silicon gel bag with clean air. For the sensors with long time storage but no electrify, they need long aging time for stability before using.

2.4 Long time exposed to adverse environment

No matter the sensors electrified or not, if exposed to adverse environment for long time, such as high humidity, high temperature, or high pollution etc, it will effect the sensors performance badly.

2.5 Vibration

Continual vibration will result in sensors down-lead response then rupture. In transportation or assembling line, pneumatic screwdriver/ultrasonic welding machine can lead this vibration.

2.6 Concussion

If sensors meet strong concussion, it may lead its lead wire disconnected.

2.7 Usage

For sensor, handmade welding is optimal way. If use wave crest welding should meet the following conditions:

2.7.1 Soldering flux: Rosin soldering flux contains least chlorine

2.7.2 Speed: 1-2 Meter/ Minute

2.7.3 Warm-up temperature: 100±20°C

2.7.4 Welding temperature: 250±10°C

2.7.5 1 time pass wave crest welding machine

If disobey the above using terms, sensors sensitivity will be reduced.
MQ135  Semiconductor Sensor for Air Quality Control

Sensitive material of MQ135 gas sensor is SnO$_2$, which with lower conductivity in clean air. When the target combustible gas exist, the sensor’s conductivity is more higher along with the gas concentration rising. Please use simple electrocircuit, Convert change of conductivity to correspond output signal of gas concentration.

MQ135 gas sensor has high sensitivity to Ammonia, Sulfide and Benze steam, also sensitive to smoke and other harmful gases. It is with low cost and suitable for different application.

**Character**
* Good sensitivity to Harmful gases in wide range
* High sensitivity to Ammonia, Sulfide and Benze
* Long life and low cost
* Simple drive circuit

**Application**
* Domestic air pollution detector
* Industrial air pollution detector
* Portable air pollution detector

**Technical Data**

<table>
<thead>
<tr>
<th>Model No.</th>
<th>MQ135</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Type</td>
<td>Semiconductor</td>
</tr>
<tr>
<td>Standard Encapsulation</td>
<td>Bakelite (Black Bakelite)</td>
</tr>
<tr>
<td>Detection Gas</td>
<td>Ammonia, Sulfide, Benze steam</td>
</tr>
<tr>
<td>Concentration</td>
<td>10-10000ppm (Ammonia, Benze, Hydrogen)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Loop Voltage $V_c$</th>
<th>≤24V DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage $V_H$</td>
<td>5.0V±0.2V AC or DC</td>
<td></td>
</tr>
<tr>
<td>Load Resistance $R_L$</td>
<td>Adjustable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Character</th>
<th>Heater Resistance $R_H$</th>
<th>31Ω±3Ω (Room Tem.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater consumption $P_H$</td>
<td>≤900mW</td>
<td></td>
</tr>
<tr>
<td>Sensing Resistance $R_s$</td>
<td>2KΩ-20KΩ(in 100ppm NH$_3$)</td>
<td></td>
</tr>
<tr>
<td>Sensitivity $S$</td>
<td>Rs(in air)/Rs(100ppm NH$_3$)≥5</td>
<td></td>
</tr>
<tr>
<td>Slope $\alpha$</td>
<td>≤0.6 ($R_{100ppm NH_3}/R_{50ppm NH_3}$)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Tem. Humidity</th>
<th>$20^\circ\pm2^\circ$; 65%±5%RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard test circuit $V_c$:5.0V±0.1V; $V_H$: 5.0V±0.1V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preheat time</td>
<td>Over 48 hours</td>
<td></td>
</tr>
</tbody>
</table>

$Ps=V_c^2\times Rs/(Rs+R_L)^2$

---

The above is basic test circuit of the sensor. The sensor need to be put 2 voltage, heater voltage ($V_H$) and test voltage ($V_C$). VH used to supply certified working temperature to the sensor, while VC used to detect voltage (VRL) on load resistance ($RL$) whom is in series with sensor. The sensor has light polarity, Vc need DC power. VC and VH could use same power circuit with precondition to assure performance of sensor. In order to make the sensor with better performance, suitable RL value is needed:

Power of Sensitivity body($Ps$):
Resistance of sensor (Rs): \[ Rs = (Vc/VRL - 1) \times RL \]

**Sensitivity Characteristics**

Fig. 1 shows the typical sensitivity characteristics of the MQ135, ordinate means resistance ratio of the sensor \((Rs/Ro)\), abscissa is concentration of gases. Rs means resistance in different gases, Ro means resistance of sensor in 100ppm Ammonia. All test are under standard test conditions.

**Influence of Temperature/Humidity**

Fig. 2 shows the typical temperature and humidity characteristics. Ordinate means resistance ratio of the sensor \((Rs/Ro)\), Rs means resistance of sensor in 100ppm Ammonia under different temp. and humidity. Ro means resistance of the sensor in environment of 100ppm Ammonia, 20°C/65%RH

**Structure and configuration**

Structure and configuration of MQ135 gas sensor is shown as Fig. 3, sensor composed by micro AL2O3 ceramic tube, Tin Dioxide (SnO2) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-4 have 6 pin, 4 of them are used to fetch signals, and other 2 are used for providing heating current.
**Notification**

**1 Following conditions must be prohibited**

1.1 Exposed to organic silicon steam

Organic silicon steam cause sensors invalid, sensors must be avoid exposing to silicon bond, fixature, silicon latex, putty or plastic contain silicon environment

1.2 High Corrosive gas

If the sensors exposed to high concentration corrosive gas (such as $\text{H}_2\text{Sz}$, $\text{SO}_x\text{'Cl}_2$, $\text{HCl}$ etc), it will not only result in corrosion of sensors structure, also it cause sincere sensitivity attenuation.

1.3 Alkali, Alkali metals salt, halogen pollution

The sensors performance will be changed badly if sensors be sprayed polluted by alkali metals salt especially brine, or be exposed to halogen such as fluorin.

1.4 Touch water

Sensitivity of the sensors will be reduced when spattered or dipped in water.

1.5 Freezing

Do avoid icing on sensor’s surface, otherwise sensor would lose sensitivity.

1.6 Applied voltage higher

Applied voltage on sensor should not be higher than stipulated value, otherwise it cause down-line or heater damaged, and bring on sensors’ sensitivity characteristic changed badly.

1.7 Voltage on wrong pins

For 6 pins sensor, if apply voltage on 1 ǃ 3 pins or 4 ǃ 6 pins, it will make lead broken, and without signal when apply on 2 ǃ 4 pins

**2 Following conditions must be avoided**

2.1 Water Condensation

Indoor conditions, slight water condensation will effect sensors performance lightly. However, if water condensation on sensors surface and keep a certain period, sensor’ sensitivity will be decreased.

2.2 Used in high gas concentration

No matter the sensor is electrified or not, if long time placed in high gas concentration, if will affect sensors characteristic.

2.3 Long time storage

The sensors resistance produce reversible drift if it’s stored for long time without electrify, this drift is related with storage conditions. Sensors should be stored in airproof without silicon gel bag with clean air. For the sensors with long time storage but no electrify, they need long aging time for stbility before using.

2.4 Long time exposed to adverse environment

No matter the sensors electrified or not, if exposed to adverse environment for long time, such as high humidity, high temperature, or high pollution etc, it will effect the sensors performance badly.

2.5 Vibration

Continual vibration will result in sensors down-lead response then rupture. In transportation or assembling line, pneumatic screwdriver/ultrasonic welding machine can lead this vibration.

2.6 Concussion

If sensors meet strong concussion, it may lead its lead wire disconnected.

2.7 Usage

For sensor, handmade welding is optimal way. If use wave crest welding should meet the following conditions:

2.7.1 Soldering flux: Rosin soldering flux contains least chlorine

2.7.2 Speed: 1-2 Meter/ Minute

2.7.3 Warm-up temperature: $100\pm20^\circ\text{C}$

2.7.4 Welding temperature: $250\pm10^\circ\text{C}$

2.7.5 1 time pass wave crest welding machine

If disobey the above using terms, sensors sensitivity will be reduced.